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in the sense that the corresponding wave suffers 
absorption when it propagates into a semi-infinite crystal 
(Miyake, 1969). 1' and 2 branches are not realistic 
because the corresponding wave suffers intensity en- 
hancement in the crystal. The dashed curve 3 gives 
Z ' >  0 and is unrealistic, so that the realistic branch 
starting from curve 1 for W > 1 leaves the hyperbola at 
W = 1 and follows the curve 3'. It leaves curve 3' at 
W = - 1 and follows the curve 2'. In a similar manner, in 
Fig. 5(e), for the realistic branch, the real part is given by 
curve 1 for W > - 1  and by curve 2' for W < - 1 .  The 
imaginary part of the realistic branch always stays in the 
lower half of the dashed curve. If we compare the 
realistic branches in (a) and (e), they have a similar form. 
In Fig. 6(e), the diffracted intensity does not have a top- 
hat form and has the maximum near W - - 1  when 
Z ' - - 0 .  The total reflection occurs at one point near 
W = - I .  

5. Summary 

We have studied dispersion surfaces by changing the 
ratio between the real and imaginary parts of the X-ray 
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Fig. 6. The rocking curves in the symmetric Bragg case. The conditions 
for curves (a)-(e) correspond to those in Fig. 5. The details for curve 
(c') are given in the text. 

polarizability. It is shown that the dispersion surface in 
the symmetric Laue case for no real part of the 
polarizability ( q -  1) is quite different from the well 
known form of the dispersion surface when the 
imaginary-part polarizability is zero. It shows a similar 
form to that in the symmetric Bragg case for no 
imaginary part of the polarizability. The dispersion 
surface in the Laue case for q - - 1  becomes pure 
imaginary for - 1  < W < 1, which explains why the 
abnormal transmission and absorption effects result. 

In the symmetric Bragg case from a semi-infinite 
crystal, the dispersion surface for no real part of the 
polarizability has no gap between the two branches and 
the two branches are tangential to each other at W -- 0. 
This results in a very sharp rocking curve when the real- 
part polarizability is zero. The sharp rocking curve may 
be useful for a monochromator with small divergent 
angle. As an example, Fig. 6(c') shows the rocking curve 
after four times diffraction from such a channel-cut 
monochromator. The width of the rocking curve (c') is 
1/100 of the curve (a). 

As shown above, the complex dispersion surfaces for 
various values of q are quite useful to interpret not only 
the shapes of the rocking curves but also the abnormal 
transmission and absorption effects. It is also possible to 
obtain information on the phases of waves corresponding 
to each branch point by using the dispersion surface. A 
paper on this topic will be published in the near future. 
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Abstract 

In 1912, von Laue first described X-ray diffraction by 
approximating as plane waves the spherical waves 
radiated by atoms in a crystal. Darwin recognized that 
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this approximation is valid only in the limit of very small 
crystals, and published in 1914 the more general 
spherical-wave theory based on the reflectivity of 
individual atomic planes. The Darwin theory is extended 
here to surface Bragg diffraction from a single-crystalline 
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monolayer, including the rederivation of a 'surface' 
Bragg's law and the reflected intensity versus ~o, the 
angle of incidence. This more general theory demon- 
strates how the intensity along a reciprocal-lattice rod 
associated with diffraction from a semi-infinite crystal is 
modified by the ~0 dependence of the length over which 
atoms in a plane emit spherical waves that constructively 
interfere at the detector. The diffracted amplitude is not 
proportional to the Fourier transform of the charge 
density. The plane- and spherical-wave models yield 
identical results for the integrated intensity across a finite 
detector area, even for incident angles far from a Bragg 
reflection. 

I. Introduct ion 

The sensitivity of X-ray diffraction measurements has 
increased enormously since the original discovery of yon 
Lane over eight decades ago (Friedrich, Knipping & yon 
Laue, 1913; yon Laue, 1913). For much of this time, 
diffraction data have been largely used by crystal- 
lographers to determine within a few percent the 
integrated intensity of a reflection, from which atomic 
structure can be inferred. With today's more sophisti- 
cated equipment and especially synchrotron-radiation 
sources, the previously undetectable 'tails' of a Bragg 
reflection are measured at levels more than a million 
times weaker than the Bragg-peak intensity and are 
analyzed to determine the structure of single atomic 
monolayers at the surface of a crystal (Andrews & 
Cowley, 1985; Robinson, 1986). As the experimental 
capabilities have so dramatically improved, it seems 
worthwhile to re-examine the kinematic theory of X-ray 
diffraction, which is commonly used in surface crystal- 
lography. In the following sections, we have largely 
restated or rederived the basic results of kinematic 
theory. While nearly all of the results were originally 
published long ago, only recently has it become 
particularly useful to examine the predicted reflectivities 
far from the Bragg peaks. Using Darwin's original model 
of spherical-wave diffraction (Darwin, 1914), we show 
how the scattered amplitudes differ for all angles of 
incidence between the plane- and spherical-wave theories 
for monolayer and bulk crystal diffraction. We further 
show, however, that the equivalence of the Bragg-peak 
integrated intensities for plane and spherical waves 
remains valid even in the tails of a Bragg reflection. 

X-ray crystallography relies upon deducing the 
structure factors, Frl, which are themselves functions of 
the positions of the atoms within the crystal unit cell. The 
scattering density in the crystal, p(r), can also be 
expressed in terms of the structure factors: 

p(r)  = ( I / V )  y ~ F a e x p ( - 2 z r i H  . r), (I) 
H 

where the H are the reciprocal-lattice vectors of the 
crystal and V is the unit-cell volume. From this, we see 

that the structure factors are simply Fourier components 
of the scattering density, 

FH = f p(r) exp(2zri H- r)dr  = Pa (2) 

Insofar as an X-ray diffraction measurement determines 
Fn, we say that the Fourier transform of the scattering 
density has been measured. By measuring IFHI for a 
sufficient number of Hs and using various strategies for 
measuring and/or guessing the phases of the structure 
factors, the complete scattering density p(r) can be 
approximated and the atomic structure of the crystal 
determined. 

As noted by Ewald (1940), for a perfect unbounded 
crystal, the generalized Fourier transform F(q) is zero 
except when q = H, so F(q) is essentially a set of 8 
functions with area FH at each node H of the reciprocal 
lattice. In other words, p(r) can be represented by 
assigning FH to each node H. The connection between 
X-ray diffraction and the Fourier transform of the 
scattering density is even more apparent when the crystal 
is finite and so small that the plane-wave approximation 
can be used (to be discussed below). The scattering 
density can be written as 

ps(r) = p(r)s(r), (3) 

where p(r) is the scattering-density function for the 
infinite crystal and s(r) is the crystal-shape function, 
which is unity when r is within the crystal boundaries 
and zero otherwise (Ewald, 1940). The Fourier transform 
of ps(r) is the convolution of the infinite-crystal 8 
function with the Fourier transform of the shape function. 
(For a crystal in the shape of a thin plate, for example, the 
shape transform will be a thin rod perpendicular to the 
surface.) If we examine the scattered X-ray intensity as a 
function of the scattering wave vector q, the plane-wave 
approximation leads to an l(q) that is proportional to the 
square of the Fourier transform of ps(r). 

The connection between diffraction and the Fourier 
transform of the scattering density forms a natural and 
intuitive foundation for much X-ray analysis. We shall 
see here, however, how this idea breaks down when the 
plane-wave model is no longer an adequate representa- 
tion of the spherical waves that are actually emitted by 
the atoms. In particular, the Fourier transform of a single 
monolayer is a rod of constant amplitude in reciprocal 
space, yet the specularly reflected intensity l(q) will be 
shown below to have a 1/q 2 dependence in the surface 
normal direction. This follows simply from the angular 
dependence of the maximum separation across which 
atoms can emit spherical waves that constructively 
interfere at the detector, i.e. the diameter of the first 
Fresnel zone (Darwin, 1914). 

This additional factor of 1/q 2 also appears in 
diffraction from a semi-infinite crystal. Here, the Fourier 
transform of the shape function happens to be 1/q in the 
surface normal direction, which corresponds to 1/(Aq) 2 
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intensity tails about each Bragg peak. In the spherical- 
wave theory, however, the specularly reflected intensity 
should fall as 1/q 4 and as 1/(q2Aq 2) from all other 
reflections. We address these differences because they 
clearly show that the physics of diffraction for plane and 
spherical waves is not the same. However, when these 
differing amplitudes are combined with their correspond- 
ing angular dependences to calculate the integrated 
intensity across the area of an X-ray detector, the errors 
in the plane-wave model cancel out to yield the correct 
spherical-wave result. This effect is well known for the 
peak intensity at a Bragg reflection (James, 1948). We 
demonstrate here its validity far into the tails of a 
reflection, where surface crystallography is done. 

II. Kinematic theory of diffraction 

We compare here the plane-wave and spherical-wave 
models of kinematic diffraction, with the goal of having 
a proper physical description of surface diffraction. 
Absorption is neglected and there is no interaction 
between the the scattered waves and the crystal, i.e. the 
dielectric constant is unity. The plane-wave model is the 
original picture used by von Laue (1913) to explain 
X-ray diffraction from crystals. We present in (A) a 
review of this plane-wave model. The first spherical- 
wave theory of X-ray diffraction was published by 
Darwin in 1914, shortly after von Laue's seminal work. 
[Note also that von Laue included an initial discussion of 
the spherical-wave theory in von Laue & Tank (1913).] 
In (B), we re-derive Darwin's calculation of the specular 
reflectivity of a monolayer, which is based on summing 
the spherical-wave amplitudes radiated by oscillating 
point charges driven by the incident wave field. Some of 
the details of this calculation are found in Appendix A. 
We then extend this approach to diffraction from the 
periodic arrangement of atoms in a crystal monolayer, 
i.e. surface diffraction, with many of the details reserved 
for Appendix B. 

(A) Plane waves 

The plane-wave approximation developed by von 
Laue (1913) can be found in the books by James (1948) 
and Warren (1969), among others. Consider an isolated 
atom in vacuum at position do which is illuminated by 
an electromagnetic plane wave with electric field 
amplitude E/ = ~tEt exp[i(2zrk/• do - o~t)]. Here, 
kt = og/2rrc = 1/~. is the wave vector, and ~:t the unit 
polarization vector. By treating the atom as an electric 
dipole, Maxwell 's  equations determine that radiation will 
be emitted by the accelerated charges as spherical waves. 
The amplitude at a point P a displacement r away is 
given by the Thomson formula: 

Eo = - ( r e / r ) f  {(Et exp[i(2rrkt • do - 090]} exp(+iogr/c) 

= - ( r e / r ) f E t  exp(2zrikr). (4) 

Here, re is the classical electron radius e2/mc 2, f .is the 
complex atomic scattering factor and E/ -- 
E/exp[i(2zrkt • do - o90]. For simplicity, we consider 
only perpendicular polarization, i.e. ~1 A_ r. The field at P 
from an atom displaced from do by the vector dm (Fig. l)  
is 

E m =  - ( r e / r ' ) fE !  exp(2zri kt •dm) exp(iogr'/c), (5) 

where F - - I r ' l  : I r - d ~ l .  As long as the distance 
between atoms is small compared to the distance to the 
detector, the factor re/r' can be replaced by re/r. In the 
plane-wave approximation, one further assumes that r '  
can be replaced by its projection along r: r' _~ r - d m  • r .  
This leads to 

Em : - ( r e / r ) f E !  exp(2rri k / •  din)  exp[2zri k -  (r - d in )  ] 

-- - ( r e / r ) f E !  exp(2rr ik ,  r) exp[2zri(kt - k ) .  dm]. 

(6) 

The phase of this wave at P is calculated as if the atom at 
dm emits a plane wave traveling parallel to r, the 
displacement between the atom at do and the detector at 
P. The amplitude still has the 1/r dependence of a 
spherical wave. 

In a crystal, each of the displacements dm is a Bravais 
lattice vector d m  -"  mlal  • m2a2 + m3a3 and the atomic 
scattering factor f is replaced by the structure factor F. 
The total amplitude at P is the sum of E,,,s over all unit 
cells: 

ET = ~ Em 
m 

= -(re/r)Et  exp(2rri k .  r)F(q) 

× ~ ~ ~ exp[2rriq. (mlal + m2a2 + m3a3)], 
ml m2 m3 

(7) 

where q _= kt - k. For a crystal with NIN2N3 (-- N)  unit 

S , p 

. .  j j  r-dmCOS   

O dm 
Fig. 1 Scattering geometry for an atom at the origin O and a second 

atom displaced by din. The X-ray source is at S a distance R0 from the 
origin, the incident ray making an angle tps with respect to d,n. The 
detector is at point P a distance r from the origin (with exit angle tpp) 
and r' from the second atom. The vector of length r -  dm cos tpp 
corresponds to the plane-wave approximation for r'. 
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cells, the intensity reduces to 

plane = ETE~ 
3D 

sin 2 zrNiq • al 

fsinZ_n'N2q • a2 × ( ~ n T ~ q q _ a ;  rrN3q • a3 ) .  (8) 
sin 2 

\ sin2 rrq. a2 / 

Equation (8) is the familiar result for the intensity 
scattered by a small crystal. If q matches a reciprocal- 
lattice vector H, then Bragg's law is obtained. For the 
special case of specular reflection from a single atomic 
layer with NIN2 unit cells (i.e. N 3 - - 1 ) ,  this further 
reduces to 

plane ._ (re/F)2E2F2(q)N~N~. (9) 2D 

(B) Spherical waves 

We now repeat this analysis retaining the spherical 
waves, as first derived for specular reflection by Darwin 
(1914), and restated by James (1948) and Warren (1969). 
We consider first a single plane of the crystal with NIN2 
square unit cells. To be more general, the incident beam 
is emitted by a point source at S a distance Ro from the 
atom at do. We shall later let Ro ---> oo to recover the 
incident-plane-wave scenario. The full derivations are 
presented in Appendices A and B. 

Again assuming perpendicular polarization, we 
examine first the reflected beam, where the source point 
S, the atom at do and the detector position P lie on a 
plane perpendicular to the surface (Fig. 2). The wave 
radiated by an atom at dm = mlal  + m2a2 is 

Em,m2 -- -(re/rm~m2)fEl 

× exp{i[2rrk(Rmtm2 + rm,m2 ) -- tot]}, (10) 

where R,,,~,,, 2 is the distance from s to the atom at dmjm2 

s p 

~"~ ~ r° ~ 
y 

*'(-" - "  x / ~  - - -ml- 

Fig. 2. Scattering geometry for reflectivity from a crystalline monolayer. 
The plane containing the source S, the detector P and the origin is 
perpendicular to the monolayer. The angles of incidence and 
reflection are tps and tpp. The path length through the origin 
is R0 +r0, while through the lattice point at (ml,m2) it is 
Rm,m2 + rm~m2. 

and rmlm2 is the additional distance to the detector 
position, P. The total field at P is obtained by summing 
the contributions from atoms at all tim in the plane. This 
is done by comparing the total path length through dm 
with that through the atom at do and expanding the 
difference in l~owers of a, the lattice constant. Retaining 
terms up to a", constructive interference is obtained and 
the summation reduces to Fresnel integrals when the 
reflection through do is specular. If R is allowed to go to 
infinity, the field at P is 

E = - (1  / sin ~o)(Fre~./a2)Et 

x exp{i[2rrk(r + R) - tot + yr/2]} 

= - i  (Q/  sin ~o)Et exp{i[2rrk(r + R) - to/]}, (11) 

where Q = re)~F(q)/a 2 and tp is the angle of incidence. 
[Compare with equations (A 10), (A 11) and (A 12) in 
Appendix A.] The corresponding intensity from this 
plane is 

spherical = (1 / sin 20)Q2E 2. (12) 
2D 

Note that this reflected beam is a plane wave, as the 
intensity is independent of r. 

The spherical-wave expression for non-specular dif- 
fraction from a periodicity a within a monolayer (Fig. 3) 
is derived in Appendix B: 

E(P) = - i  {Q/[(1 - f12)(f12 + sin 2 ~o)]1/2} 
(B8) 

x 79Et exp{i[2Jrk(R + r) - wt]}, 

where /3 = n)~/2a and P is the polarization factor. In 
general, the intensity of a surface diffracted beam from a 
plane of atoms is 

12D = {Q2/[( 1 -/32)(/32 + sin 2 qg)]}~O2E 2. (13) 

In the above spherical-wave expressions, we have 
assumed that the atomic plane is much larger than the 
area of the first Fresnel zone, i.e. N1, Nz--+ c~. To 
complete the comparison with the plane-wave theory, we 
need an expression for the kinematic diffraction from a 

s 

~ ~ m l m 2  ~" 

% . . . -  - x 

Fig. 3. Scattering geometry for surface Bragg diffraction. The incident 
and reflected beams make an angle ~0 to the crystal monolayer, i.e. the 
angle tp is to be viewed as coming out of the plane of the monolayer. 
The projection of these rays onto the surface (dashed lines) makes an 
angle 0 with the x axis. 
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crystal containing N3 atomic planes. This was derived by 
James (1948) and simply follows the procedure for 
adding plane waves already utilized in the plane wave 
model: 

QEp2E2 (s in2 zrN3q "a3 )  
= - s T n ~ q q . a ~  . (14) 13D [(1 --/~2)(fl2 + sin 2 ~o)] 

For the special case of  specular reflectivity and/or 
diffraction, this simplifies somewhat  to 

Q2E2 ( sin2 zrN3q" a3') (15) 

l aD  - -  sinE tp \ si--n ~ zr--q- a 3 / "  

III. Discussion 

We want first to directly compare the plane-wave and 
spherical-wave predictions for the intensity specularly 
reflected by a single monolayer:  

plane = (re/r)EE~FE(q)N2N~ 
2D 

(16) 
spherical _ ( 1 / s i n  20)QEE 2 
2D 

= (re/a)EE~FE(q)[4/(qa)E]. 

These two monolayer  reflectivities are plotted as dashed 
lines in .Fig. 4 for typical .values of  the parameters: 
a = 3 .0A,  f = 30, ~. = 1.5 A and r = lm.  The spheri- 
cal-wave reflectivity assumes an infinite monolayer;  the 
plane-wave reflectivity was calculated with NIN2 
adjusted to match the spherical-wave reflectivity at 
normal incidence. 

First, note that the intensity has the 1 / s inE0  behavior 
for the spherical waves. In the mathematical  derivation, 
we can trace this extra factor to the angular dependence 
of the Fresnel-zone radii. Looking at it more physically,  
we can see that the difference in path lengths from the 
source point S to the detector point P through adjacent 
atoms is proportional to sin E tp. The major diameter of  the 
central Fresnel zone, in which all of  the atoms emit 
scattered waves that add constructively at P, is therefore 
proportional to 1 / s i n  E tp. 

Second, we see that the plane-wave intensity diverges 
as the number  of unit cells NiNE increases, whereas the 
spherical-wave intensity rapidly approaches a fixed limit. 
This is due to the rapid oscillation in the phases of those 
waves that come from outside the first few Fresnel zones. 
This points out the critical parameter that separates these 
two models: the plane-wave theory is only appropriate 
when the effective crystal width is significantly less than 
Li,  the radius of the first Fresnel zone: 

Li = (1/s in~o)(kr /2)  1/2 (17) 

Choosing. typical values for the parameters ( r -  l m, 
k =  1.5 A and ~o= 15 ° ) yields a radius of about 
3 x 10-Sm (30 I.tm). 

Third, we surprisingly find that the plane-wave model  
produces a spherical total scattered wave, while the 
spherical-wave model produces a plane wave. That is, 
when the incident beam is a plane wave (i.e. the distance 
R to the source S is much larger than the distance r to the 
detector P), the plane-wave result has an intensity that 
falls as r -2, just  like a spherical wave. On the other hand, 
the spherical-wave model leads to a specular-beam 
intensity that is independent of  r, a genuine plane wave. 
In principle, this provides us with an experimental test to 
determine which model is appropriate for any diffracted 
signal. If  the rays at the detector diverge with the crystal 
as the effective source, the plane-wave model  is valid. If  
the effective source is at S, however the spherical-wave 
theory must be used. 

Next, we examine the corresponding predictions for 
the specularly reflected intensity from a thin crystal with 
N3 atomic planes: 

[s in2 zrN3q, a3~ 
"3D/plane = (re/r)2E2F2(q)NEN2 ~ --~m~q" -a3 ] 

/ s in2  zrN3q, a3~ 
l~pherical = (re/a)2E2FE(q)[4/(qa)2]~ ~lnY-~q :-a-3 }" 

(18) 

10 "2 

10 "4 

10 -6 

ara00 ~a~,s. 
500 layers 

Single layer 

0 015 i 5 
Scattering wave vector (I/a) 

Fig. 4. Comparison of spherical- and plane-wave calculations. Dashed 
lines show the relative intensity !/Io for a single monolayer using 
(17) (see text). A simple square lattice was assumed with a = 3.0 A, 
f = 30, ~. = 1.5A and r = 1 m. The size of NINE, the number of 
atoms in the plane for the plane-wave theory, was set to yield the 
same intensity at 0 = 90 ° (normal incidence) as with the spherical- 
wave theory for an infinitely large monolayer. The solid lines are the 
reflectivities from N3 = 500 such layers, using (19) and the same 
parameters as above. To simulate instrumental broadening, the 
rapidly oscillating factor (sin 2 rcN3qa/sin E 7r qa) was replaced by its 
average (1/2 sin k rcqa) except at the Bragg peak where the limiting 
value of N 2 was used. The two upper curves are for spherical waves 
and the two lower curves are the plane-wave results. Note the 
unmistakeable differences between the spherical- and plane-wave 
reflectivities at low q values. 
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These two reflectivities are plotted as the solid lines in 
Fig. 4, with the numbers of layers in the crystal, N3, set to 
500.  T h e  c u r v e s  in Fig .  4 a s s u m e  the  en t i r e  c r y s t a l  a r e a  is 
illuminated by the incident beam. The final factor in each 
formula arises from the summation of N3 plane waves, 
since the wave reflected per monolayer in both theories is 
planar. The major distinction between these is again the 
factor of 1/(qa)  2 from the spherical-wave monolayer 
reflectivity. 

It is obvious that the diffracted intensities in the plane- 
and spherical-wave models are quite different. It was 
noted long ago (James, 1948), however, that for both 
models the total intensity received across the area of a 
sufficiently large detector is exactly the same at a Bragg 
reflection. For surface crystallography, it is important to 
show that this remains true in the tails of a Bragg 
reflection, i.e. at an arbitrary point on a reciprocal-lattice 
rod. This is derived in Appendix C: the errors in intensity 
and angular divergence cancel out, so that the plane- 
wave integrated intensity yields the correct spherical- 
wave result in all cases, not just at the Bragg peak. 

In spite of this equivalence, it is important to 
emphasize that the plane-wave model is physically 
incorrect for sufficiently large domains. It is commonly 
assumed, for example, that in the Born approximation the 
differential cross section for the scattering of X-rays by a 
crystal is strictly proportional to the square of the Fourier 
transform of the scattering density: 

(dcr/dC2) = r2V21Pnl2 (19) 

A derivation can be found in Landau, Lifschitz & 
Pitaevskii (1984), for example. Evidently, this perturba- 
tion theory breaks down if the lateral dimensions of the 
specimen (either monolayer or bulk) exceed the first 
Fresnel-zone diameter. Contrary to expectations, this 
failure of perturbation theory does not imply that a 
dynamical diffraction theory is necessary because 
diffracted beams orders of magnitude smaller than the 
incident beam exhibit the discrepancy (Fig. 4). [The 
dynamical theories of Darwin (1914) and Ewald (1917) 
explicitly assume spherical waves and the von Laue 
reformulation (1931) is completely equivalent.] Both 
plane- and spherical-wave models developed above are 
completely kinematic; a correct physical description of 
kinematic diffraction from large domains merely requires 
spherical waves, which we already know are dictated by 
Maxwell's equations. The simple form of (19) must, 
however, be modified by the additional 1/q  2 of the 
diffracted intensity. That is, we lose the direct relation- 
ship between diffracted intensity and the Fourier trans- 
form of the scattering density but we retain the familiar 
plane-wave integrated intensity formulae. 

IV. Concluding remarks 

Specular reflection and in-plane diffraction formulae for 
X-ray scattering from a crystalline monolayer have been 

derived using the Darwin kinematic spherical-wave 
theory. A comparison of the plane-wave and spherical- 
wave models of kinematic diffraction has demonstrated 
significant differences in the calculated reflectivities. 
While the plane-wave theory predicts a reciprocal-space 
'truncation rod' of uniform intensity, the correct 
spherical-wave theory for monolayers of sufficient size 
predicts a 1/q2 angular dependence. This illustrates the 
breakdown of the standard assumption that diffracted 
intensities are proportional to the square of the Fourier 
transform of the scattering density. While most pre- 
viously published X-ray determinations of surface 
structure explicitly assume the validity of the plane- 
wave model (e.g. Robinson, 1986), even when the 
substrate is a nearly perfect crystal, the results are still 
generally valid because of the identical integrated 
intensities derived from the two models, both at Bragg 
peaks and far into the tails of the reflections. 
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where these ideas were first developed. Special thanks 
are due to Jin-Seok Chung for help with the figures and 
to Doon Gibbs for reading the manuscript. This work 
was supported by the National Science Foundation grant 
DMR 90-12785. 

APPENDIX A 
Reflected and transmitted beams 

Although Darwin's original treatment of reflectivity from 
a plane assumed a uniform distribution of scatterers, we 
retain here the notion of discrete atoms distributed on a 
lattice. All of the following results are otherwise identical 
to those of Darwin (1914) [see also James (1948) and 
Warren (1969)]. We consider a square-planar array of 
identical atoms in the xy plane, with bond lengths a 
oriented along the x and y axes. As shown in Fig. 2, an 
X-ray source is located at S a distance R from the atom at 
the origin, making the angle ¢Ps with the monolayer along 
the - x  axis. The source distance R will later be made 
infinite to describe a plane wave. For simplicity, the 
incident wave at the origin Et = erE1 exp[i (27rkR - cot)] 
is polarized perpendicular to the scattering plane. The 
amplitude Eo of the wave scattered by the atom at the 
origin to the detector position P a distance r away and 
making the angle ~0p with the -ix axis is 

Eo(P) = - ( e  2/mc2)(1/r)fE I exp{i[27rk(R + r) - cot]} 

(al) 
where e and m are the electron charge and mass, c is the 
speed of light in vacuum and f is the atomic scattering 
factor, which includes the form factor, dispersion and 
Debye-Waller-factor contributions. Now, consider an 
atom at the lattice position 

drnlmz = m l a l  -k- mza2 .  (A2) 
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By assuming that Idl is much smaller than r and R, we 
can use the binomial expansion to write the path length 
from S to P through the lattice point dmlm2 a s  

(em,m2 + rm,m2) = R + r + mla[cos~os - cos ~Oe] 

+ (mla)2[(sin 2 ~Os)/2R + (sin 2 9p)/2r] 

+ (m2a)2[1/2R + 1/2r] 

= R + r + Comla 

+ Cim~a 2 + C2m~a 2 (A3) 

and the wave amplitude is 

Emlm2 = -(e2 /mc2)( f  /rmlm2 )Eo exp( - iwt )  

x exp{-2rrik[R + r + Comla 

+ Clm2a 2 + C2m2a2]}. (An) 

We now write the total field amplitude at P by summing 
over all lattice sites: 

E = - (e /mc2)( f / r )Eo exp{i [2n'k(r + R) - wt]} 

N 1 - 1  

x ~ exp{2rrik[Comla + Clm21a2]} 
ml -----0 

N 2 -  I 

x ~ exp(2zrikC2m~a2), (A5) 
m2 = 0  

where we have replaced rmlm2 by r in the prefactor of the 
exponential, which is valid if the distance to the detector 
position P is much larger than the sample dimensions. 
The last summation can be rewritten as a Fresnel integral 
and evaluated exactly in the limit that N2 goes to infinity. 
The result will still be an excellent approximation to a 
finite crystal because of the rapid convergence of the sum 

exp(2rrikC2m~a 2) --~ f (1/a)exp(2rrikC2x2)dx 
m2 - - ~  

= (1/a)(4kC2)-1/2(1 + i), 

(A6) 

where we have used the identity 

oo 

f exp[iOr/2)v2]dv -- l(1 + i). (A7) 
0 

This is perhaps the most import result of the Darwin 
monolayer theory: the sum of spherical waves from an 
infinite number of atoms in a plane is finite. Now let us 
look at the other summation in (A5): 

Y] exp{2rrik[Comla + Cim2a2]} 
m l  

= y] exp { 2rrik [(cos ~os - cos 

(sin z ~os sin 2 ¢Pt,'~ 2 2] 
+ \ 2R + ~ )  m l a j ) "  (A8) 

We see at once that this reduces to the previous Fresnel 
sum if cos tpe = cos ~0s, i.e. if the reflection is specular.* 
We can then write 

+ o o  

exp(2rri kC l m21a 2) ---> f (1/a) exp(2:ri kClx2)dx 
m l  --c:x) 

= (1/a)(4kC1)-l/2(1 + i). 

(A9) 

With these results put into (A5), the field amplitude at the 
point P is 

E -- - ( eZ /mc2) fE  o exp{i [2rrk(r + R) - wt] 

x (1/r)(1/a2)[Rr/(R + r)](k/Zsinqg)(1 + i)2 

-- -(eZ /mcZ)(f  /a2 sin qg)[Rk/(R + r)]E 0 

× exp{i [2rrk(r + R) - wt + n'/2]}. (a 10) 

For convenience, we replace the constant R/(R + r) by 
unity, which is valid for a planar incident wave (R >> r). 
Now define the factor Q: 

Q =- (eZ/mcZ)MZf(2qg) 

- re kMF(q),  (a 11) 

where M = 1/a 2 is the atomic areal density and the 
form-factor contribution to the atomic scattering factor is 
explicitly denoted f(29).  In the second line, we have 
substituted the structure factor F for the atomic scattering 
factor f, which describes the scattering from an entire unit 
cell located at each Bravais-lattice point. Finally, we can 
write the field at P as 

E(P) -- - i ( Q /  sin qg)E0 exp{i [2rrk(r + R) - wt]}. 

(a12) 

This expression has several noteworthy features. First, 
the amplitude does not diverge even for a monolayer of 
infinite size. Second, the amplitude also does not depend 
on r, the distance to the detector, when the incident beam 
is a plane wave. This shows that, for specular reflectivity, 
an infinite number of spherical waves coherently super- 
pose to produce a plane wave of finite amplitude. Third, 
note that the factor i means that the phase of the total 
reflected beam is shifted by rr/2 with respect to the 
individual wave scattered by the atom at the origin. 
Finally, the scattered-beam amplitude will be at least 
three orders of magnitude smaller than the incident-beam 
amplitude for typical values of the constants. This 
ensures that we are still very much in the kinematic 
regime, where the energy scattered into a reflected beam 
is a negligible fraction of the incident flux. 

*In general, there are other valid solutions to (cos~0 s-  
cosqge)mla = n. This is in fact the 'grating equation' for the orders 
of reflection from a linear diffraction grating. In other words, the 
corresponding reciprocal-lattice rods are due to diffraction from parallel 
rows of atoms behaving exactly as an optical grating. 
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APPENDIX B 
Surface diffraction beams 

We now take advantage of having discrete atoms 
distributed on a lattice in order to calculate diffraction 
from the atomic periodicities within the monolayer,  i.e. 
surface diffraction. This subject was not treated by 
Darwin, no doubt due to the unlikelihood that such 
calculations could be compared with experiment. The 
scattering geometry,  shown in Fig. 5, is oriented so that 
each row of atoms parallel to the x axis might produce a 
net field at P that can add constructively with the field 
from all the other rows. 

As before, we want to write down the field at P d u e  to 
the scattering from an atom at d - - m ~ a i  + mzaj .  One 
finds that 

R2 rnz = R 2 + 2aR cos ~o[m 2 s in0  + m I cos0] 

+ a2[m2 + m2] (B1) 

r 2 -- r 2 + 2ar cos ~o[m2 sin 0 - m ! cos 0] mira2 

+ a2[m 2 + m22]. 

With the use of the binomial expansion again and a 
combination of  these two results, the total path length 
from S to P through the atom at d reduces to 

Rm,m2 + r,,,,m2 = R + r + 2am 2 cos ~o sin 0 

+ (a 2/2)[m~ + m 2 - cos 2 qg(m~ cos 2 0 

+ m 2 sin 2 0)][(r + R)/rR] 

+ I a 2 cos 2 qg[(2/r)ml m2 cos 0 sin 0 

- (2 /R)mlm z cos 0 sin 0]. (B2) 

This has an especially simple form when we set R = r, 
i.e. for one-to-one focusing: 

Rm~rn 2 + rm,m2 = R + r + 2m2acos~osinO 

+ (aZ/R)[m2(1 - cos 2 99 COS 2 0) 

+ m22(1 -- cos 2 q9 sin 2 0)]. (B3) 

This is to be inserted into the expression for the total field 
re-radiated from all lattice points m~, m2 to the observa- 
tion point P: 

E(P) = -79El(e 2 /mc2) ( f  /r)  

x y ]  y ]  e x p { - i [ w t  - 2n'k(Rm,m2 + rm,m2)] } 
ml m2 

= -79Et(e2/mcZ)( f / r )exp{i  [2nk(R + r) - wt]} 

× y]  exp{2rrik[2m2a cos q9 sin 0]} 
m2 

× exp{2rrik[m~(a2/R)(1 - cos 2 ~0 sin 2 0)]} 

2 2 × y] exp{2rrik[m I (a /R)(1 - cos 2 ~0 cos 2 0)]}, 
ml 

(B4) 

where T' = c2~ • ~ is the polarization correction for dipole 
radiation. For the sum over m2 to again have the form of 
a Fresnel sum, the first exponential factor must be a 
constant. This is ensured if 

2zrk(2a cos ~o sin 0) = (2n' /Z)(2a cos ~0 sin 0) 

= 2 n ' n ,  n = 0 , 4 - 1 , 4 - 2  . . . .  

o r  

2a cos q9 sin 0 = nk. (B5) 

This is Bragg ' s  law for diffraction from a two- 
dimensional crystal. It arose as a direct result of  requiring 
the summation in (B4) to have the form of a Fresnel sum. 
Deviations from this surface Bragg ' s  law produce 
oscillations in the sum that rapidly reduce the total 
scattered amplitude. This expression is nothing more, of 
course, than requiring the in-plane component  of  the 
scattering wave vector to match the in-plane reciprocal- 
lattice vector: qll = a. Since there is no constraint on the 
perpendicular component  of  q, the Bragg condition is 
met for any q that terminates on a reciprocal-lattice rod 
perpendicular to the surface. 

Next, we calculate the field at P at the Bragg 
condition: 

E(P) = -T'El(e2 /mc2) ( f  /r)  exp{i[2yrk(R + r) - wt]} 

× ~ exp{i(Z:r/~.)[mZ(a2/R)(1 - c o s  2 ~osin 2 0)]} 
m2 

× ~ exp{i(2Jr/k)[m~(a2/R)(1 - cos 2 ~0 cos 2 0)]} 
ml 

= -79Et exp{i[2rrk(R + r) - wt]}(e2/mc 2) 

× (f /r)(1/a2)[(4/LR)(1 - fl2)]-1/2 

× [(4/LR)(sin 2 q9 +/32)] -1/2 

oo -i-~ 
× f exp[iOr/Z)vZ]dv f exp[iOr/Z)uZ]du 

- - 0 ~  - - 0 0  

= - T ' E  I exp{i[2rrk(R + r) - wt]}(e2/mc 2) 

× ( f / r ) (1 /aZ)(kR/4)  

× [(1 - /32) (s in  2 qg-+-/32)]-1/2(1 + i)2 

= - P E  t exp{i[2rrk(R + r) - wt + n'/2]} 

x (e 2 / m c e ) ( f k / 2 a  2) 

× [(1 - f12)(f12 + sin 2 q9)]-1/2, (B6) 

where /3 = nk/2a.  Note that instead of  the 1/sincp 
dependence found in the specular beam, the mono- 
layer diffraction amplitude is proportional to 
1/[ /32  ..~ (sin q9)2] 1/2. 

To compare directly With the von Laue plane-wave 
model and with the Darwin reflectivity in Appendix A, 
we must consider the scenario with an incident beam that 
is a plane wave. First, we let R --+ e~ in (B2), and again 
derive the surface Bragg ' s  law by examining the linear 
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term in the exponential inside the Fresnel sum for the 
total field, E(P). This term is 

2aN2 cos tp sin 0[1 + (Nla/2r) cos tpcos 0] 

--~ 2aN2 cos tp sin 0. (B7) 

The correction term can be ignored as long as the sample 
dimensions are small compared with the detector 
distance. We therefore retain (B5) as the surface Bragg's 
law for incident plane waves also, and we find a total 
field amplitude at the detector which is twice as large as 
before: 

E(P) = -i{a/[(1 -/32)(/32 + sin 2 tp)] 1/2 } 

x 79EI exp{i [2n'k(R + r) - wt]}. (B8) 

APPENDIX C 
Integrated intensity for monolayer diffraction 

We consider a plane wave of intensity I0 incident on a 
crystalline monolayer with orthogonal unit-cell vectors 
ai and a2. The total energy scattered to the detector is 

E(O) = f f  I (0)d/dA = f f  P(O)lodtdA, (C 1) 

where 0 is the angle of incidence, the time integration is 
over the measurement interval, dA is an area element, to 
be integrated over the face of the detector, and P(O) is the 
normalized reflectivity of the monolayer. A quantity 
independent of the time interval and the incident intensity 
is the monolayer's 'reflecting power',  

(1/lo)[aE(O)/at] -- f P(O)dA. (C2) 

From (12), we have for spherical waves 

P(O) -- (Q2/sin 2 0) = (1 / s in  20)(re ~ . f / a l a 2 )  2, (C3) 

where re is the classical electron radius, ~. is the 
wavelength and f is the atomic scattering factor 
(including the form-factor correction). The correspond- 
ing result for the plane-wave approximation is 

P(O) ( -~)2f  2 sin2rrN'q" a '  = (s-~ng~qq_ a~ ) (sin2 rrN2q " a2'~ 

(C4) 

obtained from (8) by setting N3 -- 1. 
The integrated intensity of a reflection is normally 

obtained by recording the X-ray intensity from a 
stationary detector with a large acceptance area, while 
the crystal is rotated through an angular range about the 
Bragg angle 0B. This approach assumes that, at an 
increment A0 above or below 0B, the detected signal is 
negligible compared to the peak intensity. (The detector 
area also must be large enough to accept all of the 
radiation in the diffracted beam as it moves with 
changing 0.) This approach is not appropriate for 

monolayer diffraction, since I(0) does not go through a 
maximum over any range A0. If the monolayer is rotated, 
the detected signal will go through a peak only because 
the diffracted beam is moving across the acceptance area 
of the detector. In this case, the integrated intensity is 

E -- f f f  e(O)lodtdAdO 

~_ ao f f  P(Oo)lodtdA, (C5) 

where A0 is the angular acceptance of the detector. The 
approximation in the second line is valid for sufficiently 
small range A0 about the midpoint 00. 

For an integrated-intensity measured obtained by 
rotating the specimen through an angular range exceed- 
ing the detector acceptance A0, the appropriately 
normalized reflecting power of the specimen is 

(1/AOlo)[OE(Oo)/Ot] = f P(Oo)dA. (C6) 

We denote by A0 the area of the incident beam 
intercepted by the sample, making a 'footprint' of 
Ao/sinO. In the spherical-wave model, the diffracted 
beam is a plane wave and hence a constant across the 
detector, so 

f esph(0)dA = Q2Ao/sin 2 0. (C7) 

For the plane-wave model, we substitute dA -- r2d/3dF, 
where r is the distance to the detector and fl and F are 
orthogonal angular displacements (see Fig. 5): 

f Ppl(O)dA 

= ref  J\ s-:~l~-~-q-a; i~  2 

(c8)  

Writing q = qm, + Aq, where qhk "al = h and 
qhk " a2 = k correspond to being directly on the recipro- 
cal-lattice rod, we also assume for simplicity that al lies 
in the diffraction plane and a2 is perpendicular to it. 

Detector aperture 

:0 

f------S]  

Crystal 

Fig. 5. Scattering geometry for specular (r0) and non-specular (r) rays 
scattered by a specimen into a detector with a finite receiving 
aperture. The angle F refers to displacements in the diffraction plane 
and /3 is in the orthogonal direction. The total number of X-rays 
recorded by such a detector is the integrated intensity, i.e. integrated 
across the face of the detector, and therefore over a range of/3 and F 
values. 
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Then, 

and 

Aq .a  1 = Aqra I sin 0 = [(al sin 0/~.]F 

A q . a  2 = Aq#a2 = (a2/~.)fl 

f [ r s i n 2 ( n ' ~ s i n 0 F - ~  Nlal sin 0y/~.)].j [ [sin2(rr ~ Naa23/~.)] ] d/~kly 

= (1/s in O)NiNak2/ala2, (C9) 

and 

f epl(0)dA - (1 / sin O)NIN2 r2 f2  Jk2/(a 1 a2). (c10) 

We now derive expressions for this reflecting power for 
two different experimental geometries. In the first case, 
the monolayer has infinite lateral extent and is illumi- 
nated by an incident beam of cross-sectional area A0. For 
the spherical-wave model, 

f Psph(O)dA = (QaAo/ sin 2 O) = (1/s in 20)(r e k f M)2Ao, 

(c11) 

where M = 1/(alaa) is the density of surface atoms. 
For plane waves, the area on the surface is 
NlalNaaa = Ao/ sinO, so 

f Ppl(O)dA = (1 / sin O)N IN z(ref ~.) 2(1/ala2) 

= (1/s in  a O)(r e XfM)2Ao . 
(C12) 

Note that the two models give identical reflecting 
powers, and hence the same integrated intensities. When 
the specimen is rotated by more than AO, the integrated 
reflecting power is 

02 
f f P(O)dAdO = ( AO/sin 20)(rdkfM)ZAo . 
Oi 

For the second case, we consider a specimen of finite 
area As that is completely irradiated by the incident 
plane-wave field. The effective area of the incident beam 
is therefore Ao = As sin 0. For spherical waves, we find 

f Psph(O)dA = (Q2Ao/ sin 2 0) 

= (1/sinO)(rekfM)2As, 

and for plane waves 

fPpl(O)dA = (1/sinO)NlN2(ref~.)2(1/ala2) 

= (1 / sin O)(r e ~.fM)2As. 

(Cl3) 

(C14) 

Finally, we consider a crystal made up of N3 
monolayers with lattice constant a3. For spherical waves, 

we have from (16) 

0 sin aTrN3q- a 3 
Psph(O)=(Qaao/sin a ) (  s--~nZ-~q. ~13 - ) . (C15) 

If the crystal is rocked through the Bragg angle, then 

02 

Oi 

- 2 c o s 0 s  

+cx~ 

x - -  / sin2 JrN3q3a3 dq3 
sin 2 Jr q3a3 

N 3 ~. Q2A 0 

= 2a3 sin 2 On cos 0 s 

r2ef 2 ~33V 

v~ sin 20 s 

= R s, (C 16) 

where we have used dq = (2 cos 0/~.)d0, Va = ala2a3 
(the unit-cell volume) and 3V = (Ao/sinO)N3a3 (the 
irradiated volume of the crystal). If the range AO does not 
include a Bragg angle, then we simply replace 
sin 2 7rN3q3a3 by 1/2, its average: 

(~o)(OE) Q2A 0 AO/2 
- ~  -- sin 2 0 sin2(rrq3a3) 

Q2Aok Aq 

= 2 sin 2 0cos 0 2 sin20rq3a3) 

1 Aqo3 (sin 20s)  ~ 
= N---3 2 sinZ0rq3a3) ~ Ks. (C17) 

This is the reflecting power of a segment Aq3 about the 
point q3 along a reciprocal-lattice rod, where 
Aq3 = (2 cos O/~.)AO is determined by the angular 
acceptance AO of the detector. Because the reflecting 
power of a monolayer is the same for both the plane- and 
spherical-wave models [(C11) and (C12)], it will remain 
the same for a crystal of N3 layers since in both models 
the effect of multiple monolayers is simply the factor 

( sina_zrN3q_~3), 

sin 2 zr q-  

as shown in (18). In summary, we find: 

Monolayer: 

f P(O)dAdO = (AO/sin: O)(r e ~ f M )2A0" 

Crystal, Bragg: 

f P(O)dAdO = (r2f2Z38V)/~ sin 20B = Re. 
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Crystal, off-Bragg: 

f P(O)dAdO 

: (1/N3)[Aq3a3/2 sinE(:rr q3a3)](sin 20B/sin 20)Ra. 
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Abstract 

A series of test calculations of the tangent formula 
derived from Patterson-function arguments [Rius (1993). 
Acta Cryst. A49, 406--409] using single-crystal intensity 
data is presented. This new tangent formula has been 
compared with the results reported [Sheldrick (1990). 
Acta Cryst. A46, 467-473] for (a) the tangent formula 
incorporating the most reliable negative quartets and (b) 
its extension to the phase-annealing method. The success 
rate of the new tangent formula is an order of magnitude 
higher than that of (a), is better than that of (b) when the 
origin can float in at least one direction, and is similar to 
that of (b) for other space groups. 

1. Introduction 

Nowadays, the applicability of direct methods to larger 
crystal structures constitutes an active research field. 
Since the number of correct solutions produced by direct 
methods tends to decrease with increasing size of the 
structure, it is interesting to know which tangent 
formulas are most effective. Eventually, these tangent 
formulas or the functions that they maximize or minimize 
could be selected for further development. Logically, to 
determine their relative efficiencies, the different tangent 
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formulas have to be tested on the same structures. 
Unfortunately, this has not been common practice; to 
date, each new tangent formula has been tested using an 
arbitrary selection of structures. In order to modify this 
situation, the test structures given by Sheldrick (1990) 
have been selected as 'reference' structures in this work. 
In this way, besides testing the tangent formula derived 
from Patterson-function arguments, it has also been 
possible to compare it with the tangent formula that 
incorporates the most reliable negative quartets. A brief 
introduction to both tangent formulas follows. 

1.1. The tangent formula incorporating the most reliable 
negative quartets 

Most multisolution direct-methods procedures (Ger- 
main & Woolfson, 1968) are based on the maximization 
of a certain function expressed in terms of the collectivity 
q~ of phases of the reflections with large E's (the basis 
set). The simplest function of q~ 

Z ( ~ )  = ~-~-~ E_hEh, Eh_ h, COS ~ 3 ( h ,  h ' )  (1) 
h h' 

follows from the product of all the conditional 
probability distributions of triplets that only involve 
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